Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 12: 940234, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36119482

RESUMO

Objective: This study aimed to explore the expression and effect of the nuclear receptor subfamily 2 group F member 6 (NR2F6) gene in non-small cell lung cancer (NSCLC) and provide an experimental basis for the targeted therapy of NSCLC. Method: First, the expression of NR2F6 in lung cancer tissues was analyzed using the Gene Expression Omnibus and the Cancer Genome Atlas (TCGA) databases, and the expression of NR2F6 in lung cancer tissues and cells was verified by Western blotting and quantitative polymerase chain reaction. Next, the relationship between NR2F6 expression and the clinicopathological features of lung cancer was analyzed via immunohistochemistry, and the relationship between NR2F6 expression and prognosis was analyzed using the Kaplan-Meier Plotter. The influence of NR2F6 knockdown on the proliferation capacity of lung cancer cells was then verified at cell level. Finally, the expression of heterogeneous nuclear ribonucleoprotein D (HNRNPD) in lung cancer tissue was analyzed using the TCGA database and immunohistochemistry. The impact of HNRNPD knockdown on the proliferation capacity of lung cancer cells was verified at cell level, and the relationship between NR2F6 and HNRNPD was verified by co-immunoprecipitation. Results: NR2F6 was highly expressed in lung cancer tissues and cells, and its expression was positively correlated with the depth of invasion, lymphatic metastasis, and clinical stage of lung cancer. High expression of NR2F6 in lung cancer was also significantly associated with poor prognosis. At cell level, NR2F6 knockdown was found to inhibit the proliferation of H460 and H358 in lung cancer cells. Furthermore, the TCGA database and immunohistochemical results showed that HNRNPD was highly expressed in lung cancer tissues and was highly consistent with NR2F6 expression in these tissues. Knockdown of HNRNPD also inhibited the proliferation of lung cancer cells. The co-immunoprecipitation experiment verified that NR2F6 interacted with HNRNPD. Conclusion: NR2F6 may interact with HNRNPD to jointly regulate the progression of lung cancer, and this conclusion provides a new experimental basis for the study of the molecular targeted therapy of NSCLC.

2.
Commun Biol ; 5(1): 816, 2022 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-35963893

RESUMO

TAR DNA-Binding Protein 43 (TDP-43) has been well studied in neurodegenerative diseases, but its potential role in malignance is still unclear. Here, we demonstrate that TDP-43 contributes to the suppression of apoptosis by facilitating lipid metabolism in hepatocellular carcinoma (HCC). In HCC cells, TDP-43 is able to suppress apoptosis while deletion of it markedly induces apoptosis. RNA-sequencing identifies the lipid metabolism gene abhydrolase domain containing 2 (ABHD2) as the target gene of TDP-43. Tissue microarray analysis shows the positive correlation of TDP-43 and ABHD2 in HCC. Mechanistically, TDP-43 binds with the UG-rich sequence1 of ABHD2 3'UTR to enhance the mRNA stability of ABHD2, thereby upregulating ABHD2. Afterwards, TDP-43 promotes the production of free fatty acid and fatty acid oxidation-originated reactive oxygen species (ROS) in an ABHD2-dependent manner, so as to suppress apoptosis of HCC. Our findings provide insights into the mechanism of HCC progression and reveal TDP-43/ABHD2 as potential targets for the precise treatment of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Apoptose , Carcinoma Hepatocelular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Hidrolases/metabolismo , Metabolismo dos Lipídeos , Neoplasias Hepáticas/patologia
3.
Analyst ; 147(9): 1937-1943, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35389390

RESUMO

The detection of disease-related biomarkers, including microRNA (miRNA), is of crucial importance in reducing the morbidity and mortality of cancer. Thus, there is a great desire to develop an efficient and simple sensing method to fulfill the detection of miRNAs. In this study, a novel amplification assay strategy is demonstrated for the highly sensitive detection of miRNA-21 by combining a structure-switchable molecular beacon with nicking-enhanced rolling circle amplification (SMB-NRCA). A circular padlock probe (CPP) contains a target recognition sequence, two binding sites for nicking endonuclease and three hybridization sites for SMBs. miRNA-21 can hybridize with the CPP and act as polymerization primer that initiates the rolling circle amplification (RCA) reaction and two different nicking-mediated RCA processes, releasing a large amount of SMBs and leading to a significantly amplified fluorescence signal originating from the restoration of pre-quenched fluorescence via their structural switching. Via the signal amplification based on the combination of RCA, nicking and SDA, this assay system can quantitatively detect miRNA-21 in a linear change of three orders of magnitude with a detection limit of 1 pM. The assay specificity is very high so that there is no interference from coexisting miRNAs. Moreover, the sensing system possesses ideal anti-interference ability in complicated milieux such as human serum. The novel sensing strategy shows tremendous prospects for application in tumor diagnosis and clinical therapy guidance.


Assuntos
MicroRNAs , Bioensaio , Humanos , Limite de Detecção , MicroRNAs/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Hibridização de Ácido Nucleico , Espectrometria de Fluorescência/métodos
4.
Anal Chim Acta ; 1051: 179-186, 2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30661615

RESUMO

Mutation of p53 tumor suppressor gene represents one of the early molecular events in tumor initiation and progression. Although molecular computing holds tremendous potential with important applications in diagnosis, prognosis and treatment of human diseases at the molecular level, designing molecular logic gates to implement cascade amplification via operating autonomously for the detection of point mutations still remains challenging. In this contribution, we developed a three concatenated logic gates (TCLG) to perform multiple strand displacement amplification (m-SDA) for screening the cancer-related point mutations only via designing an innovative molecular beacon (MB). Specifically, using p53 gene as model target, extending the two ends of a MB via adding two fragments with the same sequence achieves two unique terminal single-stranded (ss) overhangs. After self-folding of MB into hairpin structure, the two overhangs exhibit a near inverted mirror image (IM) relationship if taking the base nature and direction into account. For this, the probe is called IM-MB. Because cascade SDAs can occur on IM-MB and promote each other, the target gene can be detected down to 10 pM. Along this line, the TCLG circuit was proposed, and two primers and target gene serve as the indispensable input signals. Utilizing this logic circuit, the point mutation or absence of target gene can be sensitively screened. Moreover, its potential application in the recognition of point mutations in complex biomatrix has been demonstrated via blind test. The proof-of-concept scheme is expected to provide new insight into the development of DNA-based molecular logic gates and their applications in basic research, medical diagnosis and precise treatment and treatment of genetic diseases.


Assuntos
Computadores Moleculares , Lógica , Sondas de Oligonucleotídeos/genética , Proteína Supressora de Tumor p53/genética , Células A549 , Primers do DNA/genética , Humanos , Mutação , Reação em Cadeia da Polimerase
5.
Anal Chem ; 90(5): 3335-3340, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29411603

RESUMO

A highly sensitive and selective colorimetric assay based on a multifunctional molecular beacon with palindromic tail (PMB) was proposed for the detection of target p53 gene. The PMB probe can serve as recognition element, primer, and polymerization template and contains a nicking site and a C-rich region complementary to a DNAzyme. In the presence of target DNA, the hairpin of PMB is opened, and the released palindromic tails intermolecularly hybridize with each other, triggering the autonomous polymerization/nicking/displacement cycles. Although only one type of probe is involved, the system can execute triple and continuous polymerization strand displacement amplifications, generating large amounts of G-quadruplex fragments. These G-rich fragments can bind to hemin and form the DNAzymes that possess the catalytic activity similar to horseradish peroxidase, catalyzing the oxidation of ABTS by H2O2 and producing the colorimetric signal. Utilizing the newly proposed sensing system, target DNA can be detected down to 10 pM with a linear response range from 10 pM to 200 nM, and mutant target DNAs are able to be distinguished even by the naked eye. The desirable detection sensitivity, high specificity, and operation convenience without any separation step and chemical modification demonstrate that the palindromic molecular beacon holds the potential for detecting and monitoring a variety of nucleic acid-related biomarkers.


Assuntos
Colorimetria/métodos , DNA Catalítico/química , DNA/análise , Genes p53/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Sequência de Bases , Benzotiazóis/química , Técnicas Biossensoriais/métodos , Compostos Cromogênicos/química , DNA/genética , DNA Catalítico/genética , Neoplasias/diagnóstico , Neoplasias/genética , Hibridização de Ácido Nucleico , Ácidos Sulfônicos/química
6.
Biosens Bioelectron ; 91: 692-698, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28119250

RESUMO

The detection of biomarkers is of crucial importance in reducing the morbidity and mortality of complex diseases. Thus, there is a great desire to develop highly efficient and simple sensing methods to fulfill the different diagnostic and therapeutic purposes. Herein, using tumor suppressor p53 gene as model target DNA, we developed a novel palindromic fragment-incorporated molecular beacon (P-MB) that can perform multiple functions, including recognition element, signal reporter, polymerization template and primer. Upon specific hybridization with target DNA, P-MBs can interact with each other and are extended by polymerase without any additional probes. As a result, hybridized targets are peeled off from P-MBs and initiate the next round of reactions, leading to the unique strand displacement amplification (SDA). The newly-proposed enzymatic amplification displays the detection limit as low as 100pM and excellent selectivity in distinguishing single-base mutation with the linear response range from 100pM to 75nM. This is the simplest SDA sensing system so far because of only involving one type of DNA probe. This impressive sensing paradigm is expected to provide new insight into developing new-type of DNA probes that hold tremendous potential with important applications in molecular biology research and clinical diagnosis.


Assuntos
Técnicas Biossensoriais/métodos , Sondas de DNA/genética , DNA/genética , Genes p53 , Neoplasias/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Sequência de Bases , Linhagem Celular Tumoral , DNA/análise , Sondas de DNA/química , Humanos , Limite de Detecção , Mutação , Espectrometria de Fluorescência/métodos , Proteína Supressora de Tumor p53/genética
7.
Analyst ; 141(14): 4417-23, 2016 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-27221763

RESUMO

The accurate detection of cancer-related genes is of great significance for early diagnosis and targeted therapy of cancer. In this contribution, an automatically cycling operation of a functional overhang-containing molecular beacon (OMB)-based sensing system was proposed to perform amplification detection of the p53 gene. Contrary to the common molecular beacon (MB), a target DNA is designated to hybridize with a label-free recognition probe (RP) with a hairpin structure rather than OMB. In the presence of a target DNA of interest, the locked primer in RP opens and triggers the subsequent amplification procedures. The newly-developed OMB is not only capable of accomplishing cyclical nucleic acid strand-displacement polymerization (CNDP) with the help of polymerase and nicking endonuclease, but is also cleaved by restriction endonucleases, removing the quencher away from the fluorophore. Thus, the target DNA at an extremely low concentration is expected to generate a considerable amount of double-stranded and cleaved OMBs, and the quenched fluorescence is completely restored, leading to a dramatic increase in fluorescence intensity. Utilizing this sensing platform, the target gene can be detected down to 8.2 pM in a homogeneous way, and a linear response range of 0.01 to 150 nM could be obtained. More strikingly, the mutant genes can be easily distinguished from the wild-type ones. The proof-of-concept demonstrations reported herein are expected to promote the development of DNA biosensing systems, showing great potential in basic research and clinical diagnosis.


Assuntos
Técnicas Biossensoriais , DNA/química , Sondas Moleculares , Técnicas de Amplificação de Ácido Nucleico , Oncogenes , Endonucleases , Humanos
8.
Acta Pharmacol Sin ; 37(6): 805-13, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27133294

RESUMO

AIM: Recent evidence shows that localization of mRNAs and their protein products at cellular protrusions plays a decisive function in the metastasis of cancer cells. The aim of this study was to identify the variety of proteins encoded by protrusion-localized mRNAs and their roles in the metastasis and invasion of liver cancer cells. METHODS: Highly metastatic hepatocellular carcinoma cell line HCCLM3 and non-metastatic hepatocellular carcinoma cell line SMMC-7721 were examined. Cell protrusions (Ps) were separated from cell bodies (CB) using a Boyden chamber assay; total mRNA population in CB and Ps fractions was analyzed using high-throughput direct RNA sequencing. The localization of STAT3 mRNA and protein at Ps was confirmed using RT-qPCR, RNA FISH, and immunofluorescence assays. Cell migration capacity and invasiveness of HCCLM3 cells were evaluated using MTT, wound healing migration and in vitro invasion assays. The interaction between Stat3 and growth factor receptors was explored with co-immunoprecipitation assays. RESULTS: In HCCLM3 cells, 793 mRNAs were identified as being localized in the Ps fraction according to a cut-off value (Ps/CB ratio) >1.6. The Ps-localized mRNAs could be divided into 4 functional groups, and were all closely related to the invasive and metastatic properties. STAT3 mRNA accumulated in the Ps of HCCLM3 cells compared with non-metastatic SMMC-7721 cells. Treatment of HCCLM3 cells with siRNAs against STAT3 mRNA drastically decreased the cell migration and invasion. Moreover, Ps-localized Stat3 was found to interact with pseudopod-enriched platelet-derived growth factor receptor tyrosine kinase (PDGFRTK) in a growth factor-dependent manner. CONCLUSION: This study reveals STAT3 mRNA localization at the Ps of metastatic hepatocellular carcinoma HCCLM3 cells by combining application of genome-wide and gene specific description and functional analysis.


Assuntos
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Fígado/patologia , RNA Mensageiro/análise , RNA Mensageiro/genética , Fator de Transcrição STAT3/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular , Humanos , Fígado/metabolismo , Neoplasias Hepáticas/patologia , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Metástase Neoplásica/genética , Metástase Neoplásica/patologia
9.
Acta Pharmacol Sin ; 36(9): 1074-84, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26235743

RESUMO

AIM: To investigate the mechanisms underlying anticancer action of the benzimidazole acridine derivative N-{(1H-benzo[d]imidazol-2-yl)methyl}-2-butylacridin-9-amine(8m) against human colon cancer cells in vitro. METHODS: Human colon cancer cell lines SW480 and HCT116 were incubated in the presence of 8m, and then the cell proliferation and apoptosis were measured. The expression of apoptotic/signaling genes and proteins was detected using RT-PCR and Western blotting. ROS generation and mitochondrial membrane depolarization were visualized with fluorescence microscopy. RESULTS: 8m dose-dependently suppressed the proliferation of SW480 and HCT116 cells with IC50 values of 6.77 and 3.33 µmol/L, respectively. 8m induced apoptosis of HCT116 cells, accompanied by down-regulation of Bcl-2, up-regulation of death receptor-5 (DR5), truncation of Bid, cleavage of PARP, and activation of caspases (including caspase-8 and caspase-9 as well as the downstream caspases-3 and caspase-7). Moreover, 8m selectively activated JNK and p38 without affecting ERK in HCT116 cells. Knockout of JNK1, but not p38, attenuated 8m-induced apoptosis. In addition, 8m induced ROS production and mitochondrial membrane depolarization in HCT116 cells. Pretreatment with the antioxidants N-acetyl cysteine or glutathione attenuated 8m-induced apoptosis and JNK activation in HCT116 cells. CONCLUSION: The new benzimidazole acridine derivative, 8m exerts anticancer activity against human colon cancer cells in vitro by inducing both intrinsic and extrinsic apoptosis pathways via the ROS-JNK1 pathway.


Assuntos
Acridinas/farmacologia , Antineoplásicos/farmacologia , Benzimidazóis/farmacologia , Neoplasias do Colo/tratamento farmacológico , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Acridinas/química , Antineoplásicos/química , Apoptose , Benzimidazóis/química , Caspases/metabolismo , Linhagem Celular Tumoral , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/patologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Células HCT116 , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...